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PERIODICITIES OF SOME HYBRID CELLULAR

AUTOMATA WITH RULES 102 AND 60

Jae-Gyeom Kim*

Abstract. We investigate periodicities of some hybrid cellular au-
tomata configured with rule 102 and 60 and null boundary condi-
tion.

1. Introduction

Cellular automata have been demonstrated by many researchers to
be a good computational model for physical systems simulation since
the concept of cellular automata first introduced by John Von Neumann
in the 1950’s. And researchers have studied on cellular automata con-
figured with rules 51, 60, 102, 153, 195 or 204 [1-7].

In this note, we will investigate periodicities of some hybrid cellular
automata configured with rule 102 and 60 and null boundary condition.

2. Preliminaries

A cellular automaton (CA) is an array of sites (cells) where each
site is in any one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some rule (the
combinational logic) which is a function of the present states of its k
neighbors for a k-neighborhood CA. For a 2-state 3-neighborhood CA,
the evolution of the (i)th cell can be represented as a function of the
present states of (i − 1)th, (i)th, and (i + 1)th cells as: xi(t + 1) =
f{xi−1(t), xi(t), xi+1(t)}, where f represents the combinational logic.
For such a CA, the modulo-2 logic is always applied.
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For a 2-state 3-neighborhood CA there are 23 distinct neighborhood

configurations and 22
3

distinct mappings from all these neighborhood
configurations to the next states, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 102, specifies an evolution
from the neighborhood configurations to the next states as:

111 110 101 100 011 010 001 000
0 1 1 0 0 1 1 0 Decimal 102.

The corresponding combinational logic of rule 102 is

xi(t + 1) = xi(t)⊕ xi+1(t),

that is, the next state of (i)th cell depends on the present states of self
and its right neighbors.

And the CA, characterized by a rule known as rule 60, specifies an
evolution from the neighborhood configurations to the next states as:

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 Decimal 60.

The corresponding combinational logic of rule 60 is

xi(t + 1) = xi−1(t)⊕ xi(t),

that is, the next state of (i)th cell depends on the present states of its
left and self neighbors.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’), periodic (extreme cells are adjacent), etc. In the
sequel, we will always assume null boundary condition unless otherwise
specified. If the rule of a CA cell involves only XOR logic, then the rule
is called a linear rule. A CA with all the cells having linear rules is called
a linear CA. And the number of cells of a CA is called the length of a
CA.

The characteristic matrix T of a CA is the transition matrix of the
CA. The next state ft+1(x) of a linear CA is given by ft+1(x) = T×ft(x),
where ft(x) is the current state and t is the time step. If all the states of
the CA form a single or multiple cycles, then it is referred to as a group
CA.

Lemma 2.1. [3] A noncomplemented CA is a group CA if and only if
Tm = I where T is the characteristic matrix of the CA, I is the identity
matrix and m is a positive integer.
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Theorem 2.2. [4] Let H be a hybrid CA configured with rules 60,
102 or 204. If rule 60 just follows rule 102 in the rule vector of H, then
H is not a group CA. Otherwise, H is a group CA and can be regarded
as a combination of independent uniform group CA’s.

3. Periodicities of cellular automata

In this section, we deal with periodicities of some hybrid CA’s with
rules 102 and 60. We begin with observation of the square matrix S
with sufficiently large size given by

Si,j =


1, if i = j or i = j + 1,

1, if i = 1 and j = 2,

0, otherwise,

or S =



1 1
1 1

1 1
1 1
· ·
· ·
· ·


where all the values of the blank entries are zero. From now on, all the
values of the blank entries in matrix representation will always be zero
unless otherwise specified.

We can easily get S2 as follows;

(S2)i,j =


1, if i = j and j ≥ 3,

1, if i = j + 2,

0, otherwise,

or

S2 =



0
0 0
1 0 1
0 1 0 1

0 1 0 1
· · · ·
· · · ·
· · · ·


.

So the CA with characteristic matrix S is not a group CA by Lemma
2.1 and Theorem 2.2. For a matrix A and for a non-negative integer r,
the entries Ai,(i+r), i = 1, 2, 3, · · · , will be called by the (r)th diagonal
of A. And the entries which are not blank in the matrix representation
of S2 above will be called by the first 4 diagonals of S2.
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We can also get S6 and S10 as follows;

(S6)i,j =



1, if i = j and j ≥ 3,

1, if i = j + 2,

1, if i = j + 4 and j ≥ 3,

1, if i = j + 6,

0, otherwise,

or

S6 =



0
0 0
1 0 1
0 1 0 1
0 0 1 0 1
0 0 0 1 0 1
1 0 1 0 1 0 1
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·



and

(S10)i,j =



1, if i = j and j ≥ 3,

1, if i = j + 2,

1, if i = j + 8 and j ≥ 3,

1, if i = j + 10,

0, otherwise,

or
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S10 =



0
0 0
1 0 1
0 1 0 1
0 0 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 0 0 1 0 1

0 1 0 1 0 0 0 0 0 1 0 1
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·



.

We can find that S6 = S4S2 and S10 = S8S2 are the results that copies
of the first 4 diagonals of S2 are shifted down 4 and 8 units, respectively,
and then added to S2, respectively.

Furthermore, if St denotes the matrix that the first 4 diagonals of S2

are shifted down t units for some positive integer t, or

(St)i,j =


1, if i = j + t and j ≥ 3,

1, if i = j + 2 + t,

0, otherwise,

then we can similarly have that S4St and S8St are the results that all
the entries of S6 = S4S2 = S4S0 and S10 = S8S2 = S8S0 are shifted
down t units, respectively, or

(S4St)i,j =



1, if i = j + t and j ≥ 3,

1, if i = j + 2 + t,

1, if i = j + 4 + t and j ≥ 3,

1, if i = j + 6 + t,

0, otherwise,

and
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(S8St)i,j =



1, if i = j + t and j ≥ 3,

1, if i = j + 2 + t,

1, if i = j + 8 + t and j ≥ 3,

1, if i = j + 10 + t,

0, otherwise.

Now we are ready to get the following lemma.

Lemma 3.1. Let S and St be the matrices as in the discussion above
where t is a non-negative integer. Then, for each integer a ≥ 2, S2aSt is
the matrix given by

(S2aSt)i,j =



1, if i = j + t and j ≥ 3,

1, if i = j + 2 + t,

1, if i = j + t + 2a and j ≥ 3,

1, if i = j + 2 + t + 2a,

0, otherwise,

in other words, S2aSt is the result that a copy of the sifted 4 diagonals
of St is shifted down 2a units and then added to St.

Proof. We will use an induction on a. For a = 2 and a = 3, we
are done in the discussion above. Assume that the lemma is true for
a = 2, 3, · · · , n−1 where n > 3. Then (S22(S23 · · · (S2a−2

(S2a−1
S0)) · · · ))

is the matrix consisted of a− 2 consecutive downward iterations of the
first 4 diagonals of S0 = S2. In other words, the matrix is the sum of
S0, S4, S8, · · · , S(2(a−1)−1)4. So if we denote this matrix by S′, then we

can have S′, SS′, S2S′, S3S′ and S4S′ one by one as follows;

(S′)i,j =


1, if i− j ≡ 0 (mod 4), 0 ≤ i− j ≤ 2a − 4 and j ≥ 3,

1, if i− j ≡ 2 (mod 4) and 2 ≤ i− j ≤ 2a − 2,

0, otherwise,

(SS′)i,j =



1, if i− j ≡ 0 (mod 4), 0 ≤ i− j ≤ 2a − 4 and j ≥ 3

1, if i− j ≡ 1 (mod 4), 1 ≤ i− j ≤ 2a − 3 and j ≥ 3

1, if i− j ≡ 2 (mod 4) and 2 ≤ i− j ≤ 2a − 2,

1, if i− j ≡ 3 (mod 4) and 3 ≤ i− j ≤ 2a − 1,

0, otherwise,
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(S2S′)i,j =


1, if i = j and j ≥ 3,

1, if i− j is even, j ≤ 2 and 2 ≤ i− j ≤ 2a − 2,

1, if i = j and i− j = 2a,

0, otherwise,

(S3S′)i,j =



1, if i = j and j ≥ 3,

1, if i = j + 1 and j ≥ 3,

1, if 2 ≤ i− j ≤ 2a − 1 and 1 ≤ j ≤ 2,

1, if 2a ≤ i− j ≤ 2a + 1,

0, otherwise,

(S4S′)i,j =



1, if i = j and j ≥ 3,

1, if i = j + 2,

1, if i = j + 2a and j ≥ 3,

1, if i = j + 2 + 2a,

0, otherwise.

And we have

S2aS0 = S(22+22+23+...+2a−2+2a−1)S0

= S4S(22+23+...+2a−2+2a−1)S0

= S4(S22(S23 · · · (S2a−2
(S2a−1

S0)) · · · ))
= S4S′

So we have the conclusion in the case of t = 0. And the conclusions
in other cases can be easily induced just by applying shift down to the
conclusion in the case of t = 0.

By Lemma 3.1 we can easily have a lemma.

Lemma 3.2. Let S be the matrix S in Lemma 3.1 and m the matrix
size of S. If m ≥ 2 and m ≤ 2a + 2 for some non-negative integer a,
then S2+2a = S2.

Let S be the matrix S in Lemma 3.1 with size m ≥ 2 and T another
matrix S in Lemma 3.1 with size n ≥ 2. And let S∗ be the matrix of 180-
degree rotation of S. Then (S∗)i,j = S(m−i+1),(m−j+1) for all i, j. And

(S∗)k is the matrix of 180-degree rotation of Sk for all positive integers
k. So the properties about periodicities of S∗ and S are coincide. Now
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let U be the square matrix of size m + n− 2 given by

U =

(
S∗ 0
0 T

)
in which (S∗)(m−1),(m−1), (S∗)(m−1),m, (S∗)m,(m−1) and (S∗)m,m are

overlapped with T1,1, T1,2, T2,1 and T2,2, respectively, or

U =



· ·
· ·
· ·

1 1
1 1

1 1
1 1

1 1
1 1
· ·
· ·
· ·



.

Then, for all positive integers k, we can easily check that

Uk =

(
(S∗)k 0

0 T k

)
with 4 entries overlap between (S∗)k and T k as between S∗ and T above.

In fact, for all integers k ≥ 2, all the overlapping entries between (S∗)k

and T k are zero and so there is no actual interaction between (S∗)k and
T k.

Now we are ready to have a result on periodicities of some hybrid
CA’s with rules 102 and 60.

Theorem 3.3. Let H be a hybrid CA of length ` configured with
rules 102 and 60. Assume that the rule applied to the first m cells of
H is 102 and the rule applied to the second n cells of H is 60 with
m ≥ 1, n ≥ 1 and ` = m + n. If a is a non-negative integer so that
max{m,n} ≤ 2a + 1, then U2+2a = U2 where U is the characteristic
matrix of H.

Proof. If ` ≤ 3, it is obvious. So let ` > 3. And let U be the
characteristic matrix of H. Then U is of the form

U =

(
S∗ 0
0 T

)
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just as in the discussion above where S∗ and T are the matrices as in
the discussion above of size m + 1 and n + 1, respectively. So we have

Uk =

(
(S∗)k 0

0 T k

)
for all positive integers k. Hence we have the conclusion by Lemma 3.2
because the properties about periodicities of S∗ and S are coincide and
because (S∗)k and T k are completely independent of each other for all
integers k ≥ 2.
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